Fig.1. A hanging chain.

Fig.2. Simple suspension bridge.

Fig.3. Keleti Railway Station (Budapest, Hungary).

Fig.4. Freely-hanging electric power cables.
Problem 1.
Determine the shape of a hanging chain.
Let the chain be described by the function y(x), and let the
tension be described by the function T(x). Consider a small piece of the chain, with
endpoints at x and x+dx, as shown below.
Let the tension at x pull downward at an angle θ1 with respect to the horizontal, and
let the tension at x+dx pull upward at an angle θ2 with respect to the horizontal.
Balancing the horizontal and vertical forces on the small piece of chain gives
T(x+dx)cos(θ2)=T(x)cos(θ1),T(x+dx)sin(θ2)=T(x)sin(θ1)+gϱdxcos(θ1),
where ϱ is the mass per unit length. The second term on the right is the weight of
the small piece, because dx/cos(θ1) (or dx/cos(θ2), which is essentially the same) is
its length.
Squaring and adding eqs. (1) gives [T(x+dx)]2=[T(x)]2+2T(x)gϱtan(θ1)dx+O(dx2). From this
Since tan(θ1)=y′(x), we obtain T′(x)=gϱy′(x). Integrating both sides we get T(x)=gϱy(x)+c1, where c1∈R is an arbitrary constant.
Let’s see what we can extract from the first equation in eqs. (1).
Using the trigonometrical identity cos2(z)=11+tan2(z) it follows cos2(θ1)=11+(y′(x))2, and cos2(θ2)=11+(y′(x+dx))2. Subtituting these into the first equation of (1) we obtain T2(x+dx)1+(y′(x+dx))2=T2(x)1+(y′(x))2, or equivalently, T2(x+dx)T2(x)=1+(y′(x+dx))21+(y′(x))2. Here T2(x+dx)=[T(x)+T′(x)dx+O(dx2)]2=T2(x)+2T(x)T′(x)dx+O(dx2), and assuming the existence of y″ [y'(x+dx)]^2=[y'(x)]^2+2y'(x)y''(x)dx+O(dx^2). Substituting these values into \eqref{eq:Ty} we have 2\frac{T'(x)}{T(x)}dx+O(dx^2)=2\frac{y'(x)y''(x)}{1+(y'(x))^2}dx+O(dx^2), that is, \frac{T'(x)}{T(x)}-\frac{y'(x)y''(x)}{1+(y'(x))^2}=O(dx). Taking dx\to 0 we obtain \frac{T'(x)}{T(x)}=\frac{y'(x)y''(x)}{1+(y'(x))^2}. Integrating both sides gives \ln T(x)+c_2=\frac{1}{2}\ln(1+(y'(x))^2), where c_2\in\mathbf{R} is an arbitrary constant. Exponentiating gives \begin{equation} \label{eq:Typrime} c_3^2T^2(x)=1+(y'(x))^2, \end{equation} where c_3=e^{c_2}.
We now consider eq. \eqref{eq:Typrime} and \eqref{eq:T_and_y}. Eliminating T(x) yields c_3^2(g\varrho y(x)+c_1)^2=1+(y'(x))^2. We can rewrite this in the somewhat nicer form, 1+(y'(x))^2=\alpha^2(y(x)+h)^2, where \alpha=c_3g\varrho, and h=c_1/g\varrho. We look for the non-constant solution. Separating the variables (it is enough to consider the + sign) \frac{1}{\sqrt{\alpha^2 (y+h)^2-1}}dy=1 dx. Integrating both sides (Hint: (a) u:=\alpha (y+h) (b) u:=\cosh(x) ) \frac{1}{\alpha}\ln\left(\alpha(h+y)+\sqrt{\alpha^2(h+y)^2-1}\right)=x+a, where a\in\mathbf{R} is an arbitrary constant.
From this \alpha(h+y(x))+\sqrt{\alpha^2(h+y(x))^2-1}=e^{\alpha(x+a)}. Solving this equation for h+y(x) we obtain \bbox[lightblue,5px,border:2px solid red]{\color{#800000}{ \bf{y(x)+h=\frac{1}{\alpha}\cosh[\alpha(x+a)].}}}
Squaring and adding eqs. (1) gives [T(x+dx)]2=[T(x)]2+2T(x)gϱtan(θ1)dx+O(dx2). From this
[T(x+dx)−T(x)][T(x+dx)+T(x)]=2T(x)gϱtan(θ1)dx+O(dx2),T(x+dx)−T(x)dx[T(x+dx)+T(x)]=2T(x)gϱtan(θ1)+O(dx),limdx→0T(x+dx)−T(x)dx[T(x+dx)+T(x)]=limdx→0[2T(x)gϱtan(θ1)+O(dx)],T′(x)2T(x)=2T(x)gϱtan(θ1),T′(x)=gϱtan(θ1).
Since tan(θ1)=y′(x), we obtain T′(x)=gϱy′(x). Integrating both sides we get T(x)=gϱy(x)+c1, where c1∈R is an arbitrary constant.
Let’s see what we can extract from the first equation in eqs. (1).
Using the trigonometrical identity cos2(z)=11+tan2(z) it follows cos2(θ1)=11+(y′(x))2, and cos2(θ2)=11+(y′(x+dx))2. Subtituting these into the first equation of (1) we obtain T2(x+dx)1+(y′(x+dx))2=T2(x)1+(y′(x))2, or equivalently, T2(x+dx)T2(x)=1+(y′(x+dx))21+(y′(x))2. Here T2(x+dx)=[T(x)+T′(x)dx+O(dx2)]2=T2(x)+2T(x)T′(x)dx+O(dx2), and assuming the existence of y″ [y'(x+dx)]^2=[y'(x)]^2+2y'(x)y''(x)dx+O(dx^2). Substituting these values into \eqref{eq:Ty} we have 2\frac{T'(x)}{T(x)}dx+O(dx^2)=2\frac{y'(x)y''(x)}{1+(y'(x))^2}dx+O(dx^2), that is, \frac{T'(x)}{T(x)}-\frac{y'(x)y''(x)}{1+(y'(x))^2}=O(dx). Taking dx\to 0 we obtain \frac{T'(x)}{T(x)}=\frac{y'(x)y''(x)}{1+(y'(x))^2}. Integrating both sides gives \ln T(x)+c_2=\frac{1}{2}\ln(1+(y'(x))^2), where c_2\in\mathbf{R} is an arbitrary constant. Exponentiating gives \begin{equation} \label{eq:Typrime} c_3^2T^2(x)=1+(y'(x))^2, \end{equation} where c_3=e^{c_2}.
We now consider eq. \eqref{eq:Typrime} and \eqref{eq:T_and_y}. Eliminating T(x) yields c_3^2(g\varrho y(x)+c_1)^2=1+(y'(x))^2. We can rewrite this in the somewhat nicer form, 1+(y'(x))^2=\alpha^2(y(x)+h)^2, where \alpha=c_3g\varrho, and h=c_1/g\varrho. We look for the non-constant solution. Separating the variables (it is enough to consider the + sign) \frac{1}{\sqrt{\alpha^2 (y+h)^2-1}}dy=1 dx. Integrating both sides (Hint: (a) u:=\alpha (y+h) (b) u:=\cosh(x) ) \frac{1}{\alpha}\ln\left(\alpha(h+y)+\sqrt{\alpha^2(h+y)^2-1}\right)=x+a, where a\in\mathbf{R} is an arbitrary constant.
From this \alpha(h+y(x))+\sqrt{\alpha^2(h+y(x))^2-1}=e^{\alpha(x+a)}. Solving this equation for h+y(x) we obtain \bbox[lightblue,5px,border:2px solid red]{\color{#800000}{ \bf{y(x)+h=\frac{1}{\alpha}\cosh[\alpha(x+a)].}}}