You need JavaScript enabled to view most of the content
Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Chemical Reactions 1

Problem 1.
The functions x(t) and y(t) describe the concentration of two substances, respectively. The first component transforms into the second one with the rate coefficient k>0, and the second component decomposes at the rate μ>0. Describe the system.

Show Solution


We have to investigate the system x(t)=kx(t),y(t)=kx(t)μy(t);x(0)=x0,y(0)=y0. From the first equation x(t)=x0ekt. Substituting it into the second equation we get y(t)+μy(t)=kx0ekt,y(0)=y0. we obtain y(t)=eμt[kx0eμtktdt+C]. Case (a). \boldsymbol{\mu=k}.
Then y(t)=(kx_0 t+C)e^{-kt}. Since y(0)=y_0 it follows y(t)=(kx_0 t+y_0)e^{-kt}. We note that if x_0\gt 0 then \frac{x(t)}{y(t)}=\frac{x_0}{kx_0 t+y_0}, and \lim_{t\to\infty}\frac{x(t)}{y(t)}=0. Case (b). \boldsymbol{\mu\neq k}.
Then y(t)=\left(-\frac{kx_0}{k-\mu}e^{-t(k-\mu)} +C \right)e^{-\mu t}. Since y(0)=y_0 it follows y(t)=\left(-\frac{kx_0 e^{-t(k-\mu)}}{k-\mu} +y_0+\frac{x_0 k}{k-\mu} \right)e^{-\mu t}. We note that if x_0\gt 0 then \begin{align*} \frac{x(t)}{y(t)} &=\frac{x_0 e^{-t(k-\mu)}}{-\frac{kx_0 e^{-t(k-\mu)}}{k-\mu} +y_0+\frac{x_0 k}{k-\mu}}\\ &=\frac{x_0}{-\frac{k x_0}{k-\mu}+e^{t(k-\mu)}\left(y_0+\frac{k x_0}{k-\mu} \right)}. \end{align*} If k\gt \mu then \lim_{t\to\infty}\frac{x(t)}{y(t)}=0. If k\lt\mu then \lim_{t\to\infty}\frac{x(t)}{y(t)}=\frac{\mu-k}{k}.\quad\blacksquare