Problem 1.
The functions x(t) and y(t) describe the concentration of two substances, respectively.
The first component transforms into the second one with the rate coefficient k>0, and the second component decomposes at the rate μ>0. Describe the system.
We have to investigate the system
x′(t)=−kx(t),y′(t)=kx(t)−μy(t);x(0)=x0,y(0)=y0.
From the first equation
x(t)=x0e−kt.
Substituting it into the second equation we get
y′(t)+μy(t)=kx0e−kt,y(0)=y0.
Then y(t)=(kx_0 t+C)e^{-kt}. Since y(0)=y_0 it follows y(t)=(kx_0 t+y_0)e^{-kt}. We note that if x_0\gt 0 then \frac{x(t)}{y(t)}=\frac{x_0}{kx_0 t+y_0}, and \lim_{t\to\infty}\frac{x(t)}{y(t)}=0. Case (b). \boldsymbol{\mu\neq k}.
Then y(t)=\left(-\frac{kx_0}{k-\mu}e^{-t(k-\mu)} +C \right)e^{-\mu t}. Since y(0)=y_0 it follows y(t)=\left(-\frac{kx_0 e^{-t(k-\mu)}}{k-\mu} +y_0+\frac{x_0 k}{k-\mu} \right)e^{-\mu t}. We note that if x_0\gt 0 then \begin{align*} \frac{x(t)}{y(t)} &=\frac{x_0 e^{-t(k-\mu)}}{-\frac{kx_0 e^{-t(k-\mu)}}{k-\mu} +y_0+\frac{x_0 k}{k-\mu}}\\ &=\frac{x_0}{-\frac{k x_0}{k-\mu}+e^{t(k-\mu)}\left(y_0+\frac{k x_0}{k-\mu} \right)}. \end{align*} If k\gt \mu then \lim_{t\to\infty}\frac{x(t)}{y(t)}=0. If k\lt\mu then \lim_{t\to\infty}\frac{x(t)}{y(t)}=\frac{\mu-k}{k}.\quad\blacksquare
Using the general formula for solution
we obtain
y(t)=e−μt[kx0∫eμt−ktdt+C].
Case (a). \boldsymbol{\mu=k}.
Then y(t)=(kx_0 t+C)e^{-kt}. Since y(0)=y_0 it follows y(t)=(kx_0 t+y_0)e^{-kt}. We note that if x_0\gt 0 then \frac{x(t)}{y(t)}=\frac{x_0}{kx_0 t+y_0}, and \lim_{t\to\infty}\frac{x(t)}{y(t)}=0. Case (b). \boldsymbol{\mu\neq k}.
Then y(t)=\left(-\frac{kx_0}{k-\mu}e^{-t(k-\mu)} +C \right)e^{-\mu t}. Since y(0)=y_0 it follows y(t)=\left(-\frac{kx_0 e^{-t(k-\mu)}}{k-\mu} +y_0+\frac{x_0 k}{k-\mu} \right)e^{-\mu t}. We note that if x_0\gt 0 then \begin{align*} \frac{x(t)}{y(t)} &=\frac{x_0 e^{-t(k-\mu)}}{-\frac{kx_0 e^{-t(k-\mu)}}{k-\mu} +y_0+\frac{x_0 k}{k-\mu}}\\ &=\frac{x_0}{-\frac{k x_0}{k-\mu}+e^{t(k-\mu)}\left(y_0+\frac{k x_0}{k-\mu} \right)}. \end{align*} If k\gt \mu then \lim_{t\to\infty}\frac{x(t)}{y(t)}=0. If k\lt\mu then \lim_{t\to\infty}\frac{x(t)}{y(t)}=\frac{\mu-k}{k}.\quad\blacksquare