You need JavaScript enabled to view most of the content

Electric Circuits 1

Fig.1. RC-circuit.

 

Problem 1.
Determine I(t) for
(a) a constant electromotive force,
(b) a periodic electromotive force,
if I(0):=I0 is given.

Show Solution


we get RI(t)+1CI(t)dt=E(t).
Differentiating the equation with respect to t we find RI(t)+1CI(t)=E(t).
we obtain I(t)=et/(RC)(1Ret/(RC)E(t)dt+c).
Since I(0)=I0, we get c=I0, and I(t)=et/(RC)(1Rt0eτ/(RC)E(τ)dτ+I0).
Case (a). Constant electromotive force.
If E(t) is constant, then it follows simply I(t)=I0et/(RC).
Case (b). Periodic electromotive force E(t)=E0sin(ωt).
In this case E(t)=E0ωcos(ωt) and t0eτ/(RC)E(τ)dτ=E0ωt0eτ/(RC)cos(ωτ)dτ.
we obtain E0ωRt0eτ/(RC)cos(ωτ)dτ=et/(RC)E0ωCCRωsin(ωt)+cos(ωt)C2R2ω2+1E0ωCC2R2ω2+1.
It follows I(t)=E0ωCCRωsin(ωt)+cos(ωt)C2R2ω2+1+et/(RC)(I0E0ωCC2R2ω2+1).
Here we can transform the first term further if we use that asin(x)+bcos(x)a2+b2=sin(x+δ),(a,b>0),
where tan(δ)=ba.
Hence I(t)=E0ωCC2R2ω2+1sin(ωt+δ)+et/(RC)(I0E0ωCC2R2ω2+1),
where tan(δ)=1CRω.