Fig.1. RC-circuit.
Problem 1.
Determine I(t) for (a) a constant electromotive force,
(b) a periodic electromotive force,
if I(0):=I0 is given.
we get
RI(t)+1C∫I(t)dt=E(t).
If E(t) is constant, then it follows simply I(t)=I0e−t/(RC).
In this case E′(t)=E0ωcos(ωt) and ∫t0eτ/(RC)E′(τ)dτ=E0ω∫t0eτ/(RC)cos(ωτ)dτ.
Hence I(t)=E0ωC√C2R2ω2+1sin(ωt+δ)+e−t/(RC)(I0−E0ωCC2R2ω2+1),
Differentiating the equation with respect to t we find
RI′(t)+1CI(t)=E′(t).
Using the general formula for solution
we obtain
I(t)=e−t/(RC)(1R∫et/(RC)E′(t)dt+c).
Since I(0)=I0, we get c=I0, and
I(t)=e−t/(RC)(1R∫t0eτ/(RC)E′(τ)dτ+I0).
Case (a). Constant electromotive force.
If E(t) is constant, then it follows simply I(t)=I0e−t/(RC).
Case (b). Periodic electromotive force E(t)=E0sin(ωt).
In this case E′(t)=E0ωcos(ωt) and ∫t0eτ/(RC)E′(τ)dτ=E0ω∫t0eτ/(RC)cos(ωτ)dτ.
Applying integration by parts
we obtain
E0ωR∫t0eτ/(RC)cos(ωτ)dτ=et/(RC)E0ωCCRωsin(ωt)+cos(ωt)C2R2ω2+1−E0ωCC2R2ω2+1.
It follows
I(t)=E0ωCCRωsin(ωt)+cos(ωt)C2R2ω2+1+e−t/(RC)(I0−E0ωCC2R2ω2+1).
Here we can transform the first term further if we use that
asin(x)+bcos(x)√a2+b2=sin(x+δ),(a,b>0),
where tan(δ)=ba.
Hence I(t)=E0ωC√C2R2ω2+1sin(ωt+δ)+e−t/(RC)(I0−E0ωCC2R2ω2+1),
where tan(δ)=1CRω.