Fig.2. RLC-circuit.
Problem 2.
Determine I(t) for (a) a constant electromotive force,
(b) a periodic electromotive force,
if I(0):=I0 and I′(0)=I′0 are given.
we get
LI′(t)+RI(t)+1C∫I(t)dt=E(t).
If E(t) is constant, then it follows LI″(t)+RI′(t)+1CI(t)=0.
Since I(0)=I0, I′(0)=I′0 we obtain the linear system c1+c2=I0,λ1c1+λ2c2=I′0.
In this case λ1=λ2=−R2L,
In this case λ1,2=−R2L±i√4L−R2C2L√C.
Hence I(t)=e−R2Lt√C(2LI′0+RI0)24(−CR2+4L)+I20sin(√4L−R2C2L√Ct+δ),
Case (b). Periodic electromotive force E(t)=E0sin(ωt).
In this case E′(t)=E0ωcos(ωt) and LI″(t)+RI′(t)+1CI(t)=E0ωcos(ωt).
Then we collect the sine and cosine terms and equate them to 0 and E0ωcos(ωt), Lω2(−a)+Rωb+a/C=E0ω,Lω2(−b)+Rω(−a)+b/C=0.
Hence Ip(t)=E0√R2+S2(R√R2+S2sin(ωt)−S√R2+S2cos(ωt)).
Applying to our case Ip(t)=I0sin(ωt−δ),
Differentiating the equation with respect to t we find
LI″(t)+RI′(t)+1CI(t)=E′(t).
Case (a). Constant electromotive force.
If E(t) is constant, then it follows LI″(t)+RI′(t)+1CI(t)=0.
The general solution of the homogeneous equation is (we make a detailed discussion below)
I(t)=c1eλ1t+c2eλ2t,
where λ1 and λ2 are the roots of the characteristic equation
λ2+RLλ+1LC=0,
that is,
λ1,2=−R2L±√R2C−4L2L√C.
(i) R2C−4L>0.
Since I(0)=I0, I′(0)=I′0 we obtain the linear system c1+c2=I0,λ1c1+λ2c2=I′0.
Solving this system
c1=−I0λ2+I′0λ1−λ2,c2=−−I0λ1+I′0λ1−λ2.
(ii) R2C−4L=0.
In this case λ1=λ2=−R2L,
and
I(t)=(c1+c2t)e−R2Lt.
Since I(0)=I0, I′(0)=I′0 we obtain the linear system
c1=I0,c2−c1R2L=I′0.
Solving this system
c1=I0,c2=I0R2L+I′0.
Hence
I(t)=(I0+(I0R2L+I′0)t)e−R2Lt.
(iii) R2C−4L<0.
In this case λ1,2=−R2L±i√4L−R2C2L√C.
The solution of the differential equation can be written in the form
I(t)=e−R2Lt(d1sin(√4L−R2C2L√Ct)+d2cos(√4L−R2C2L√Ct)).
Since I(0)=I0, I′(0)=I′0 we obtain the linear system
d2=I0,−Rd22L+d1√−CR2+4LL√C=I′0.
Solving this system
d2=I0,d1=√C(2LI′0+RI0)2√−CR2+4L.
Hence
I(t)=e−R2Lt(√C(2LI′0+RI0)2√−CR2+4Lsin(√4L−R2C2L√Ct)+I0cos(√4L−R2C2L√Ct)).
Here we can transform the term in the bracket further if we use that
asin(x)+bcos(x)√a2+b2=sin(x+δ),(a,b>0),
where tan(δ)=ba.
Hence I(t)=e−R2Lt√C(2LI′0+RI0)24(−CR2+4L)+I20sin(√4L−R2C2L√Ct+δ),
where tan(δ)=2I0√−CR2+4L√C(2LI′0+RI0).
Case (b). Periodic electromotive force E(t)=E0sin(ωt).
In this case E′(t)=E0ωcos(ωt) and LI″(t)+RI′(t)+1CI(t)=E0ωcos(ωt).
We seek a particular solution by the method of undetermined coefficients. Let
Ip(t):=acos(ωt)+bsin(ωt).
Then
I′p(t)=ω(−asin(ωt)+bcos(ωt)),I″p(t)=ω2(−acos(ωt)−bsin(ωt)).
Substitute them into (1) we have
LI″p(t)+RI′p(t)+1CIp(t)=L(−aω2cos(ωt)−bω2sin(ωt))+R(−asin(ωt)+bωcos(ωt))+1C(acos(ωt)+bsin(ωt))=(Lω2(−a)+Rωb+a/C)cos(ωt)+(Lω2(−b)+Rω(−a)+b/C)sin(ωt).
Then we collect the sine and cosine terms and equate them to 0 and E0ωcos(ωt), Lω2(−a)+Rωb+a/C=E0ω,Lω2(−b)+Rω(−a)+b/C=0.
The solution of this system is
a=−E0SR2+S2,b=E0RR2+S2,
where
S=ωL−1ωC.
Here we may assume that R>0, so R2+S2>0.
Hence Ip(t)=E0√R2+S2(R√R2+S2sin(ωt)−S√R2+S2cos(ωt)).
Here we can transform the first term further if we use that
Asin(x)−Bcos(x)√A2+B2=sin(x−δ),(A,B>0),
where tan(δ)=BA.
Applying to our case Ip(t)=I0sin(ωt−δ),
where
I0=E0√R2+S2,
and
tan(δ)=SR.