The Solow Model - Introduction
Problem 1.
Production function: Y=F(K,L)
Y: output, K: capital stock, L: labour force
k=K/L
k: capital/labour ratio
y=Y/L
y: output/labour ratio
YL=F(K,L)L=F(KL,1)=F(k,1)=f(k)
y=f(k)
f(0)=0,f′(k)>0,f″(k)<0,k>0
Assumptions:
˙L=nL,L(0)=L0
n: constant growth rate of labour force
S=sY
S: savings as a constant fraction of output
S=I
I: investment, which is the change in the capital stock plus replacement investment:
I=˙K+δK
K(0)=K0
˙K=I−δK=S−δK=sY−δK
˙KK=sY−δKK=sYL(LK)−δ=sf(k)k−δ
˙LL=nLL=n
˙k=sf(k)−δk−nk=sf(k)−(n+δ)k
Initial conditions:
k(0)=K0L0=k0
We use a Cobb-Douglas production function:
Y=aKαL1−α,0<α<1
YL=a(KL)α
y=f(k)=akα
˙k=sakα−(n+δ)k
˙k+(n+δ)k=sakα
This is a Bernoulli equation, which takes the general form
dkdt+kP(t)=kαQ(t)
k−α˙k+k1−αP(t)=Q(t)
k−α˙k+(n+δ)k1−α=sa
Defining the following transformation
v=k1−α
we obtain
˙v=(1−α)k−α˙k
or
˙k=kα1−α˙v
k−αkα1−α˙v+(n+δ)v=sa
˙v1−α+(n+δ)v=sa
˙v+(1−α)(n+δ)v=(1−α)sa
which is a linear differential equation in v.\;Solution:
v(t)=san+δ+(v0−san+δ)e−(1−α)(n+δ)t
which satisfies the initial condition
v0=k1−α0
k1−α=san+δ+(k1−α0−san+δ)e−(1−α)(n+δ)t
Hence
k(t)=[san+δ+e−(1−α)(n+δ)t(k1−α0−san+δ)]11−α
y(t)=akα=a[san+δ+e−(1−α)(n+δ)t(k1−α0−san+δ)]α1−α