You need JavaScript enabled to view most of the content

Solow growth model in economics

The Solow Model - Introduction

Problem 1.

Production function: Y=F(K,L)
Y: output, K: capital stock, L: labour force k=K/L
k: capital/labour ratio y=Y/L
y: output/labour ratio YL=F(K,L)L=F(KL,1)=F(k,1)=f(k)
y=f(k)
f(0)=0,f(k)>0,f(k)<0,k>0
Assumptions: ˙L=nL,L(0)=L0
n: constant growth rate of labour force S=sY
S: savings as a constant fraction of output S=I
I: investment, which is the change in the capital stock plus replacement investment: I=˙K+δK
K(0)=K0

Show Solution


Differentiating the variable k with respect to time dkdt=˙k=˙(KL)=L˙KK˙LL2=˙KLKL˙LL=KL˙KKKL˙LL=k(˙KK˙LL)
˙K=IδK=SδK=sYδK
˙KK=sYδKK=sYL(LK)δ=sf(k)kδ
˙LL=nLL=n
˙k=sf(k)δknk=sf(k)(n+δ)k
Initial conditions: k(0)=K0L0=k0
We use a Cobb-Douglas production function: Y=aKαL1α,0<α<1
YL=a(KL)α
y=f(k)=akα
˙k=sakα(n+δ)k
˙k+(n+δ)k=sakα
This is a Bernoulli equation, which takes the general form dkdt+kP(t)=kαQ(t)
kα˙k+k1αP(t)=Q(t)
kα˙k+(n+δ)k1α=sa
Defining the following transformation v=k1α
we obtain ˙v=(1α)kα˙k
or ˙k=kα1α˙v
kαkα1α˙v+(n+δ)v=sa
˙v1α+(n+δ)v=sa
˙v+(1α)(n+δ)v=(1α)sa
which is a linear differential equation in v.\;Solution: v(t)=san+δ+(v0san+δ)e(1α)(n+δ)t
which satisfies the initial condition v0=k1α0
k1α=san+δ+(k1α0san+δ)e(1α)(n+δ)t
Hence k(t)=[san+δ+e(1α)(n+δ)t(k1α0san+δ)]11α
y(t)=akα=a[san+δ+e(1α)(n+δ)t(k1α0san+δ)]α1α